動かざることバグの如し

猫ゆえに。。。

Darknetで1行もコードを書かずに物体認識する

Darknetを使うと一発で物体認識を行うことができる。学習済みのモデルも配布されてるので自分でが再学習する必要もなしという超お得

環境

  • Ubuntu 16.04
  • CUDA 9(GPUなくても動くっぽい)

インストール

息を吸うようにgit clone

git clone https://github.com/pjreddie/darknet.git
cd darknet
make

これだけ(ぇ

ただしデフォルトだとGPUを使わずにCPUだけを使うので、GPUを使用したビルドにしたい場合は同一ディレクトリのMakefile冒頭のGPUとCUDNNを1に変更する。

GPU=1
CUDNN=1
OPENCV=0
OPENMP=0
DEBUG=0

いざ物体認識

./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg

以下のような途中経過が流れて最後に結果が表示される

layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32
    1 max          2 x 2 / 2   608 x 608 x  32   ->   304 x 304 x  32
    2 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64
    3 max          2 x 2 / 2   304 x 304 x  64   ->   152 x 152 x  64
    4 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128
    5 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64
    6 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128
    7 max          2 x 2 / 2   152 x 152 x 128   ->    76 x  76 x 128
    8 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256
    9 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128
   10 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256
   11 max          2 x 2 / 2    76 x  76 x 256   ->    38 x  38 x 256
   12 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
   13 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256
   14 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
   15 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256
   16 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
   17 max          2 x 2 / 2    38 x  38 x 512   ->    19 x  19 x 512
   18 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
   19 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512
   20 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
   21 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512
   22 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
   23 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024
   24 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024
   25 route  16
   26 conv     64  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x  64
   27 reorg              / 2    38 x  38 x  64   ->    19 x  19 x 256
   28 route  27 24
   29 conv   1024  3 x 3 / 1    19 x  19 x1280   ->    19 x  19 x1024
   30 conv    425  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 425
   31 detection
mask_scale: Using default '1.000000'
Loading weights from yolo.weights...Done!
data/dog.jpg: Predicted in 0.118000 seconds.
dog: 82%
car: 28%
truck: 64%
bicycle: 85%

predictions.pngが生成される。こんな感じ

f:id:thr3a:20180227222442p:plain

試しにのんたんでやってみた。ちゃんとcatで判別されてて嬉しい。

f:id:thr3a:20180227222457p:plain

広告を非表示にする